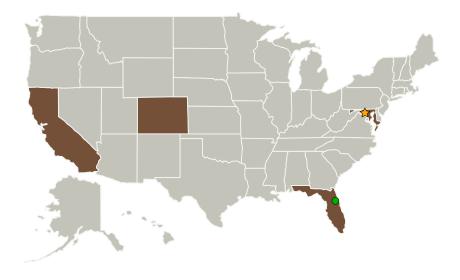
Restore-L (Restore-L)

Completed Technology Project (2016 - 2020)


Project Introduction

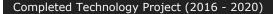
The Restore-L Mission will demonstrate refueling and a relocation of the Landsat 7 satellite. Restore-L will launch to a nominal (LEO) altitude of 680 km and conduct its on-orbit checkout. Landsat 7 will descend to a servicing altitude of 685 km and enter a stable, solar-inertial attitude. Restore-L will then use both ground-generated and on-board navigation solutions to rendezvous with Landsat 7 and perform an autonomous capture. After client capture, the assigned refueling tasks will be performed by ground operators. When all refueling tasks are complete, Restore-L will modify Landsat 7's orbit to demonstrate relocation capability then release the spacecraft and depart to its own transit orbit.

Anticipated Benefits

Restore-L advances robotic satellite servicing technologies to operational status, including refuel, repair, and orbit modification services to satellites in LEO.

Primary U.S. Work Locations and Key Partners

The Restore-L servicer extends its robotic arm to grasp and refuel a client satellite on orbit. Artist's rendering.


Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Links	3
Project Website:	3
Technology Areas	3
Target Destination	3
Supported Mission Type	3

Technology Demonstration Missions

Restore-L (Restore-L)

Organizations Performing Work	Role	Туре	Location
Goddard Space Flight Center(GSFC)	Lead Organization	NASA Center	Greenbelt, Maryland
Kennedy Space Center(KSC)	Supporting Organization	NASA Center	Kennedy Space Center, Florida
Space Systems/Loral, LLC(SSL)	Supporting Organization	Industry	San Jose, California
United States Geological Survey(USGS)	Supporting Organization	US Government	Menlo Park, California
West Virginia University	Supporting Organization	Academia	Morgantown, West Virginia

Primary U.S. Work Locations		
California	Colorado	
Florida	Maryland	

Project Transitions

April 2016: Project Start

January 2020: Closed out

Closeout Summary: This project did not end. It was restructured to merge wit h SPIDER and was given a new name.

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

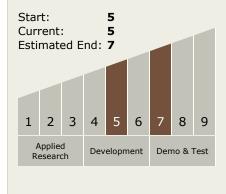
Responsible Program:

Technology Demonstration Missions

Project Management

Program Director:

Trudy F Kortes

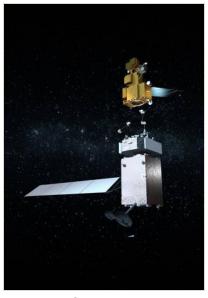

Program Manager:

Tawnya P Laughinghouse

Principal Investigators:

Brent Robertson Jill M Mcquire

Technology Maturity (TRL)


Technology Demonstration Missions

Restore-L (Restore-L)

Completed Technology Project (2016 - 2020)

Images

Restore-L.jpg

The Restore-L servicer extends its robotic arm to grasp and refuel a client satellite on orbit. Artist's rendering. (https://techport.nasa.gov/imag e/100908)

Links

GSFC satellite servicing (https://nexis.gsfc.nasa.gov/OSAM-1.html)

OSAM-1 TDM site

(https://www.nasa.gov/mission_pages/tdm/satellite-servicing.html)

Project Website:

https://www.nasa.gov/mission_pages/tdm/main/index.html#.VQb6XUjJzyE

Technology Areas

Primary:

TX04 Robotic Systems
 TX04.5 Autonomous
 Rendezvous and Docking
 TX04.5.5 Capture
 Mechanisms and
 Fixtures

Target Destination Earth

Supported Mission Type Push

